
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

1 Daniel Llamocca

Custom Peripheral for the AXI4-Full Interface

OBJECTIVES
▪ Create a Hardware/Software system using the ZYBO Board or the ZYBO Z7-10 Board
▪ Create custom AXI4-Full peripherals in VHDL and integrate them into a Block Based Design in Vivado 2019.1.
▪ Create a software application in SDK that can transfer data from/to custom peripheral.

ZYBO/ZYBO Z7-10 BOARD SETUP FOR HARDWARE/SOFTWARE CO-DESIGN

▪ It is assumed that the definition files (available in vivado-boards-mastes.zip) have been installed in Vivado.

▪ ZYBO: PS_CLK input: 50 MHz. PL_CLK input: 125 MHz. By default, a 100 MHz is generated for the PL fabric.
▪ ZYBO Z7-10: PS_CLK input: 33.33 MHz. PL_CLK input: 125 MHz. By default, a 50 MHz clock is generated for the PL fabric.

PIXEL PROCESSOR: CUSTOM PERIPHERAL FOR AXI4-FULL INTERFACE

CONSIDERATIONS

▪ We will use the Pixel Processor with NC=4, NI=NO=8, F=1.

▪ AXI4-Full Peripheral: the design allows for 3 cases:
✓ MEMO: Xilinx® example just to test a simple 16-word (32 bits) memory architecture (no pixel processor).
✓ PIXO: Modified “MEMO”. Between input data and the 16-word memory, we inserted the pixel processor and a register.
✓ FIFO: Custom FIFO-based interface that we will be using. All writes/reads to any 16-word memory position is treated

the same (writing/reading on the FIFO).
▪ List of files (hardware description) to use:

✓ mypixfull_v1_0.vhd: AXI4-Full Peripheral (top file, Vivado template).

✓ mypixfull_v1_0_S00_AXI.vhd: AXI4-Full Interface description (edited Vivado template, select the “FIFO” option)

✓ myAXI_IP.vhd, my_AXI_fifo.vhd, my_AXImem.vhd, my_genpulse_sclr.vhd: Ancillary files for the AXI4-Full Peripheral.

✓ static_ip.vhd: Pixel Processor IP with glue logic to the FIFOs. Pixel Processor parameters (F(1..5)) are specified here.

✓ LUT_group.vhd: Top file of the Pixel Processor IP

✓ LUT_NItoNO.vhd, LUTNIto1.vhd, pack_xtras.vhd: Other files that make up the Pixel Processor

✓ LUT_values8to8.txt: LUT values in a text file.

✓ tb_mypixAXI4Full.vhd: Testbench for AXI4-Full peripheral. This is very useful as it emulates the AXI signals resulting

from the execution of the software in the PS. This allows to debug the peripheral before it is integrated in the PSoC.
▪ Pixel Processor AXI4-Full Peripheral (FIFO mode) with AXI signals (we make S_AXI_CLK=CLK_FX).

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

LUT
8-to-8

LUT
8-to-8

LUT
8-to-8

upix_ip

LUT
8-to-8

oFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

if ull

mem_wren

S_AXI_ARESETN

F

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

2 Daniel Llamocca

IP GENERATION
▪ Create new project in Vivado: myaxifullpix

✓ Make sure the default language is VHDL, so that the system wrapper and the template files are created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.
✓ Create a new AXI4 Peripheral. Name: mypixfull. Location /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Full, 32 bits. Interface Mode: Slave. Memory Size: 64 bytes (16 32-bit words)
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be mypixfull_v1_0_S00_AXI.vhd). Modify the project:

 Replace mypixfull_v1_0_s00_AXI.vhd with our edited file mypixfull_v1_0_S00_AXI.vhd. Same for the file

mypixfull_v1_0.vhd (this is not strictly necessary).

 Add the extra files to the folder /hdl in /ip_repo/mypixfull_1.0 and add these source files (including the .txt file)

to the Vivado project. * Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.
✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated the code in a different project.

✓ Go to Package IP – mypixfull → File Groups (Merge changes). Then Review and Package → Re-Package IP.

▪ Your custom IP is now ready to be used as an AXI4-Full Peripheral.
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO
▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYPIXFULL peripheral.

▪ Click on Run Block Automation and Run Connection Automation. Then ‘Validate Design’

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper)

▪ Synthesize, implement, and generate the bitstream.
✓ An error will be reported when Synthesizing. Vivado only copies VHDL files from the IP folder to the embedded project

folder (located inside the /<peripheral name>.srcs/…/ipshared folder). As a result, the LUT_NItoNO.vhd file cannot

find the LUT_values.txt. We need to place this text file in the same folder as the LUT_NItoNO.vhd file.

✓ This folder location is available by opening the LUT_NItoNO.vhd file. You need to find this file in the design structure or

via the Vivado error which will point to the LUT_NItoNO.vhd file. After copying the .txt file, you can Synthesize again.

✓ In general, this procedure is to be followed for any ancillary file (e.g. text file) used by the VHDL files.
▪ Export hardware (with bitstream) and launch SDK.

SDK
▪ See Tutorial Unit 2 for details on how to create and test a software application on SDK.
▪ Go to Xilinx Tools → Repositories, click on ‘New’ and then browse to the folder \ip_repo\mypixfull_1.0 and click ok.

▪ Create a new SDK application: pixtest. Then, copy the following file into the /src folder: test_pixi.c

▪ The software routine controls the AXI4-Full Pixel Processor peripheral by writing and reading from memory positions. Note
that the instructions to write on the AXI4-Full peripheral are different than in the case of AXI4-Lite.

▪ Testing strategy: write four 32-bit words and read four 32-bit words. Each output word corresponds to an input word.
✓ MYPIXFULL_mWriteMemory(Base Address, 32-bit word): Use this function (created when generating the AXI-4 Full

IP) to write a 32-bit word onto the AXI4-Full Peripheral.
✓ MYPIXFULL_mReadMemory(Base Address): Use this function (created when generating the AXI4-Full IP) to read a 32-

bit word from the AXI4-Full Peripheral.
✓ Base Address: In the FIFO case, any address in the 64-byte range (the one allowed for the AXI4-Full Pixel Processor

peripheral) works since we only write/read to/from the FIFOs.

✓ For example, with the given Pixel Processor Parameters (with parameter F = 1), we are supposed to get:
Input Output

0xF00DBEEF 0xF83ADDF7

0xBEBEDEAF 0xDDDDEED4

0xFADEDEAD 0xFDEEEED2

0xCAFEC0C0 0xE3FFDEDE

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

3 Daniel Llamocca

PIPELINED DIVIDER: CUSTOM PERIPHERAL FOR AXI4-FULL INTERFACE

CONSIDERATIONS

▪ We will use the Pipelined Divider with N=16, M=16.

▪ AXI4-Full Peripheral: the VHDL files allow only for the case:
✓ FIFO: Custom FIFO-based interface that we will be using. All writes/reads to any 16-word memory position is treated

the same (writing/reading on the FIFO).

▪ List of files (hardware design) to use:

✓ mypipdivfull_v1_0.vhd: AXI4-Full Peripheral (top file, Vivado template).

✓ mypipdivfull_v1_0_S00_AXI.vhd: AXI4-Full Interface description (edited Vivado template)

✓ myAXI_IP.vhd, my_AXI_fifo.vhd, my_genpulse_sclr.vhd: Ancillary files for the AXI4-Full Peripheral.

✓ pipdiv_ip.vhd: Pipelined Divider IP with glue logic to the FIFOs. Parameters (N, M) are specified here.

✓ res_div_pip.vhd: Top file of the Pipelined Divider IP

✓ unit_proc.vhd, my_pashiftreg.vhd, fulladd.vhd, dffe.vhd: Other files that make up the Pipelined Divider

✓ tb_mypipdivAXI4Full.vhd: Testbench for AXI4-Full peripheral. This is very useful as it emulates the AXI signals

resulting from the execution of the software in the PS. We can then carefully verify the functionality of the peripheral
before it is integrated in the PSoC.

▪ Pipelined Divider AXI4-Full Peripheral (FIFO mode) with AXI signals (we make S_AXI_CLK=CLK_FX).

✓ Active-high reset: This is required by the FIFOs.
✓ Note how we also feed the active-high reset to the Pipelined Divider and to the FSM@CLKFX. Though we could have

used the active-low AXI bus reset (S_AXI_ARESETN), we preferred the high-level reset as this configuration might be
useful if we decide to make the create a run-time alterable region inside this AXI4-Fulll peripheral.

IP GENERATION
▪ Create new project in Vivado: myaxifullpipdiv

✓ Make sure the default language is VHDL, so that the system wrapper and the template files are created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.
✓ Create a new AXI4 Peripheral. Name: mypipdivfull. Location /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv _arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

if ull

Pipelined
Divider IP

E vrst

Q

R

irden

owren

32 32

S_AXI_ARESETN

A

B

16

16

16

16

of ull

N M

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

4 Daniel Llamocca

✓ Add Interface: Full, 32 bits. Interface Mode: Slave. Memory Size: 64 bytes (16 32-bit words)
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be mypipdivfull_v1_0_S00_AXI.vhd). Modify the project:

 Replace mypipdivfull_v1_0_s00_AXI.vhd with our edited file mypipdivfull_v1_0_S00_AXI.vhd. Same for the file

mypipdivfull_v1_0.vhd (this is not strictly necessary).

 Add the extra files to the folder /hdl in /ip_repo/mypipdivfull_1.0 and add these source files to the Vivado

project. * Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.
✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated the code in a different project.

✓ Go to Package IP – mypipdivfull → File Groups (Merge changes). Then Review and Package → Re-Package IP.

▪ Your custom IP is now ready to be used as an AXI4-Full Peripheral.
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO
▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYPIPDIVFULL peripheral.

▪ Click on Run Block Automation and Run Connection Automation. Then ‘Validate Design’

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper)

▪ Synthesize, implement, and generate the bitstream.
▪ Export hardware (with bitstream) and launch SDK.

SDK
▪ See Tutorial Unit 2 for details on how to create and test a software application on SDK.
▪ Go to Xilinx Tools → Repositories, click on ‘New’ and then browse to the folder \ip_repo\mypipdivfull_1.0 and click ok.

▪ Create a new SDK application: pipdivtest. Then, copy the following file into the /src folder: test_pipdiv.c

▪ The software routine controls the AXI4-Full Pipelined Divider peripheral by writing and reading from memory positions.
▪ Testing strategy: write four 32-bit words and read four 32-bit words. Each output word corresponds to an input word.

✓ MYPIPDIVFULL_mWriteMemory(Base Address, 32-bit word): Use this function (created when generating the AXI-4

Full IP) to write a 32-bit word onto the AXI4-Full Peripheral.
✓ MYPIPDIVFULL_mReadMemory(Base Address): Use this function (created when generating the AXI4-Full IP) to read a

32-bit word from the AXI4-Full Peripheral.
✓ Base Address: In the FIFO case, any address in the 64-byte range (the one allowed for the AXI4-Full Pipelined Divider

peripheral) works since we only write/read to/from the FIFOs.

✓ For example, for the given with the given Pipelined Divider parameters (N=M=16), we are expected to get:
Input (A|B) Output (Q|R)

0x008C0009 0x000F0005

0x00BB000A 0x00120007

0x0FEA0371 0x00040226

0x09640037 0x002B0027

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

5 Daniel Llamocca

PIPELINED 2D CONVOLUTION KERNEL: CUSTOM PERIPHERAL FOR AXI4-FULL INTERFACE

CONSIDERATIONS

▪ We will use the Pipelined 2D Convolution Kernel with N=3, B=C=8.

▪ AXI4-Full Peripheral: the VHDL files allow only for the case:
✓ FIFO: Custom FIFO-based interface that we will be using. All writes/reads to any 16-word memory position is treated

the same (writing/reading on the FIFO).

▪ List of files (hardware design) to use:

✓ myconv2full_v1_0.vhd: AXI4-Full Peripheral (top file, Vivado template).

✓ myconv2full_v1_0_S00_AXI.vhd: AXI4-Full Interface description (edited Vivado template)

✓ myAXI_IP.vhd, my_AXI_fifo.vhd, my_genpulse_sclr.vhd: Ancillary files for the AXI4-Full Peripheral.

✓ myconv2_ip.vhd: Pipelined 2D Conv Kernel IP with glue logic to the FIFOs. Parameters (N, B, C) are specified here.

✓ myconv2.vhd: Top file of the Pipelined 2D Convolution Kernel IP

✓ adder_tree.vhd, pack_xtras.vhd, my_pashiftreg.vhd, my_rege.vhd, my_addsub.vhd, fulladd.vhd, dffe.vhd:

Other files that make up the Pipelined 2D Convolution Kernel IP.
✓ tb_myconv2AXI4Full.vhd: Testbench for AXI4-Full peripheral. This is very useful as it emulates the AXI signals resulting

from the execution of the software in the PS. We can then carefully verify the functionality of the peripheral before it is
integrated in the PSoC.

▪ Pipelined 2D Convolution Kernel AXI4-Full Peripheral (FIFO mode) with AXI signals (we make S_AXI_CLK=CLK_FX).

✓ Active-high reset: This is required by the FIFOs.
✓ Note how we also feed the active-high reset to the Pipelined 2D Conv Kernel and to the FSM@CLKFX. Though we could

have used the active-low AXI bus reset (S_AXI_ARESETN), we preferred the high-level reset as this configuration might
be useful if we decide to make the create a run-time alterable region inside this AXI4-Fulll peripheral.

IP GENERATION
▪ Create new project in Vivado: myaxifullconv2

✓ Make sure the default language is VHDL, so that the system wrapper and the template files are created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.
✓ Create a new AXI4 Peripheral. Name: myconv2full. Location /ip_repo.

7
2

3
2

Eri

20

Conv Kernel

E vrst

H

D F

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv _arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

if ull

irden

owren

S_AXI_ARESETN

3
2

7
2

Input

Interface

O utput

Interface

E

02 0B 02

05 0E 05

02 0B 02

8

2

1

0
0

N B C

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

6 Daniel Llamocca

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

✓ Add Interface: Full, 32 bits. Interface Mode: Slave. Memory Size: 64 bytes (16 32-bit words)
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be myconv2full_v1_0_S00_AXI.vhd). Modify the project:

 Replace myconv2full_v1_0_s00_AXI.vhd with our edited file myconv2full_v1_0_S00_AXI.vhd. Same for the file

myconv2full_v1_0.vhd (this is not strictly necessary).

 Add the extra files to the folder /hdl in /ip_repo/myconv2full_1.0 and add these source files to the Vivado project.

* Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.
✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated the code in a different project.

✓ Go to Package IP – myconv2full → File Groups (Merge changes). Then Review and Package → Re-Package IP.

▪ Your custom IP is now ready to be used as an AXI4-Full Peripheral.
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO
▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYCONV2FULL peripheral.

▪ Click on Run Block Automation and Run Connection Automation. Then ‘Validate Design’

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper)

▪ Synthesize, implement, and generate the bitstream.
▪ Export hardware (with bitstream) and launch SDK.

SDK
▪ See Tutorial Unit 2 for details on how to create and test a software application on SDK.
▪ Go to Xilinx Tools → Repositories, click on ‘New’ and then browse to the folder \ip_repo\myconv2full_1.0 and click ok.

▪ Create a new SDK application: conv2test. Then, copy the following file into the /src folder: test_conv2.c

▪ The software routine controls the AXI4-Full Pip. 2D Conv Kernel peripheral by writing and reading from memory positions.
▪ Testing strategy: write three 32-bit words and read one 32-bit words. Each output word corresponds to 3 input words.

✓ MYCONV2FULL_mWriteMemory(Base Address, 32-bit word): Use this function (created when generating the AXI-4 Full

IP) to write a 32-bit word onto the AXI4-Full Peripheral.
✓ MYCONV2FULL_mReadMemory(Base Address): Use this function (created when generating the AXI4-Full IP) to read a 32-

bit word from the AXI4-Full Peripheral.
✓ Base Address: In the FIFO case, any address in the 64-byte range (the one allowed for the AXI4-Full Pipelined 2D

Convolution Kernel peripheral) works since we only write/read to/from the FIFOs.

✓ For example, for the given with the given Pipelined 2D Conv Kernel parameters (N=3, B=C=8), we are expected to get:
Input (D) Output (F)

0xA1B2C3D4

0xF0E1D2C3

0x000000B3

0x00002B82

0xF109050A

0xC302A1F0

0x0000001C

0x000018FF

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

7 Daniel Llamocca

2D DCT (DISCRETE COSINE TRANSFORM): CUSTOM PERIPHERAL FOR AXI4-FULL INTERFACE

CONSIDERATIONS

▪ We will use the 2D DCT hardware that allows for transforms of sizes 4, 8, and 16.

▪ As for the AXI4-Full Peripheral, the VHDL files allows only for the case:
✓ FIFO: Custom FIFO-based interface that we will be using. All writes/read to any of the 16-word memory positions is

treated the same (writing/reading on the FIFO).

▪ Description of the hardware files (the most important ones) we are using:

✓ mydctfull_v1_0.vhd: AXI4-Full Peripheral (top file, Vivado template).

✓ mydctfull_v1_0_S00_AXI.vhd: AXI4-Full Interface description (edited Vivado template)

✓ myAXI_IP.vhd, my_AXI_fifo.vhd, my_genpulse_sclr.vhd: Ancillary files for the AXI4-Full Peripheral.

✓ dct_ip.vhd: top file of the hardware that runs at CLKFX. This includes the 2D DCT IP, the input/output interfaces to the

FIFOs, the Output Buffer, and the FSM@CLKFX.
✓ DCT_2d.vhd: Top file of the 2D DCT hardware architecture

✓ fsm_fullypip.vhd, fsm_onetrans.vhd: Hardware description of the FSM @ CLKFX.

✓ DCT4_NH16_LUT_values[1..4], DCTeo8_NH16_LUT_values[1..8], DCTeo16_NH16LUT_values[1..16].txt: LUT

values for the DCT Transform coefficients specified in text files.

▪ 2D DCT parameters: In my_AXI_fifo.vhd, we can modify: N (transform size: 4, 8, 16), B (input pixel bitwidth: 8, 16), NO

(output pixel bitwidth: 8,16), IMP (implementation type: folded, pipelined), NH (coefficient bit-width). We fix NH=16.

▪ 2D DCT AXI4-Full Peripheral (FIFO-based) with AXI signals (we make S_AXI_CLK=CLK_FX).

IP GENERATION
▪ Create new project in Vivado: myaxifulldct

✓ Make sure the default language is VHDL, so that the system wrapper and the template files are created in VHDL

✓ At Default Part, go to Boards, and select the Zybo (or Zybo Z7-10) Board.

▪ From the menu bar, select Tools → Create and Package New IP.
✓ Create a new AXI4 Peripheral. Name: mydctfull. Location: /ip_repo.

Peripheral Repositories tip: To add a previously-generated IP into a new project, go to: Project Settings → IP → IP

repositories and point to the associated repository folder.

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv_arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
wren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

ifull

2D DCT IP

E v

X

In
pu

t I
nt

er
fa

ce

rst

...

Output
Buffer

N
O

x
N

N

B
x
N

O
ut

pu
t I

nt
er

fa
ce

Y

irden

owren

32 32

N B NO IMP

S_AXI_ARESETN

http://dllamocca.org/dig_library/dsp/DCT_DA_and_PLB_interface.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

8 Daniel Llamocca

✓ Add Interface: Full, 32 bits. Interface Mode: Slave. Memory Size: 64 bytes (16 32-bit words)
✓ Select Edit IP. A New project appears, open it and look for the <peripheral name>_S00_AXI.vhd file (in this case it will

be mydctfull_v1_0_S00_AXI.vhd). Modify the project:

 Replace mydctfull_v1_0_s00_AXI.vhd with our edited file mydctfull_v1_0_S00_AXI.vhd. Same for the file

mydctfull_v1_0.vhd (this is not strictly necessary).

 Add the extra files to the folder /hdl in /ip_repo/mydctfull_1.0 and add these source files (including ALL the .txt

files) to the Vivado project. * Vivado 2019.1: by default, the files will be added to the folder /src.

✓ There is no need to add ports as our peripheral does not include external I/Os.
✓ Synthesize your circuit (just to double-check everything is ok): You should’ve simulated the code in a different project.

✓ Go to Package IP – mydctfull → File Groups (Merge changes). Then Review and Package → Re-Package IP.

▪ Your custom IP is now ready to be used as an AXI4-Full Peripheral.
▪ You will return to the original Vivado Project.

CREATING A BLOCK DESIGN PROJECT IN VIVADO
▪ Click on Create Block Design and instantiate the Zynq PS and the AXI MYDCTFULL peripheral.

▪ Click on Run Block Automation and Run Connection Automation. Then ‘Validate Design’

▪ There is no need to add an .xdc file as our peripheral does not use external ports.

▪ Create the VHDL wrapper (Sources Window → right click on the top-level system design → Create HDL Wrapper)

▪ Synthesize, implement, and generate the bitstream.
✓ An error will be reported when Synthesizing. Vivado only copies VHDL files from the IP folder to the embedded project

folder (located inside the /<peripheral name>.srcs/…/ipshared folder). As a result, the DCT design files cannot find

the .txt files. We need to place these text files in the same folder as the rest of the design files.

✓ This folder location is available by opening the .vhd file(s) that require these .txt files. Though you can find these files

in the design structure, it is better to let the Vivado error point to the .vhd file(s) that “cannot open” the .txt files. After

copying ALL of the .txt files, you can Synthesize again.

✓ In general, this procedure is to be followed for any ancillary files (e.g. text files) used by the VHDL files.
▪ Export hardware (with bitstream) and launch SDK.

SDK
▪ See Tutorial Unit 2 for details on how to create and test software application on SDK.
▪ Go to Xilinx Tools → Repositories, click on ‘New’ and then browse to the folder \ip_repo\mydctfull_1.0 and click ok.

▪ Create a new SDK application: dcttest. Then, copy the following file into the /src folder: dct_tst.c

▪ The software routine controls the AXI4-Full 2D DCT peripheral by writing and reading from memory positions.

▪ Testing strategy: For 𝑁 = 4, 𝑁𝑂 = 16, 𝐵 = 8. For every 2D Transform, we write 4 input columns (four 32-bit words), and

we get 4 output columns (eight 32-bit words).
✓ MYDCTFULL_mWriteMemory(Base Address, 32-bit word): Use this function (created when generating the AXI-4 Full

IP) to write a 32-bit word onto the AXI4-Full Peripheral.
✓ MYDCTFULL_mReadMemory(Base Address): Use this function (created when generating the AXI4-Full IP) to read a 32-

bit word from the AXI4-Full Peripheral.
✓ Base Address: In the FIFO case, any address in the 64-byte range (the one allowed for the AXI4-Full 2D DCT peripheral)

works since we only write/read to/from the FIFOs.
✓ For the given 2D DCT parameters, we provide two data sets. For the input values, each 32-bit word is a column; for the

output values, each two 32-bit words is a row.

Input (columns) Output (rows) Input (columns) Output (rows)

0xDEADBEEF

0xBEBEDEAD

0xFADEBEAD

0xCAFEBEDF

0x8000E92E

0x14C00D82

0x18A6E418

0xDB3E1FB2

0x0A401E19

0x1D40236D

0xF8382A32

0xDEC9FDE7

 0xCFC7C9C7

0xCAC4C6C3

0xC6C3C7C3

0xBEBDC2BD

0x80000CF4

0xFF0003D5

0x0471045F

0xFF89FF65

0x010003CE

0x0000000B

0x06D0FFE5

0x00310020

